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Abstract

This paper employs a parallel batch screening technique for the identification of both selective and high-affinity displacers for a model binary
mixture of proteins in a cation-exchange system. A variety of molecules were screened as possible displacers for the proteins ribonuclease
A (RNAseA) and�-chymotrypsinogen A (�-chyA) on high performance Sepharose SP. The batch screening data for each protein was used
to select leads for selective and high-affinity displacers and column experiments were carried out to evaluate the performance of the selected
leads. The data from the batch displacements was also employed to generate quantitative structure–efficacy relationship (QSER) models based
on a support vector machine regression approach. The resulting models had high correlation coefficients and were able to predict the behaviour
of molecules not included in the training set. The descriptors selected in the QSER models for both proteins were examined to provide insights
into factors influencing displacer selectivity in ion-exchange systems. The results presented in this paper demonstrate that this parallel batch
screening–QSER approach can be employed for the identification of selective and high-affinity displacers for protein mixtures.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Ion-exchange displacement chromatography with low-
molecular-mass displacers has attracted significant attention
as a powerful technique for the purification of biomolecules
from complex biological mixtures[1–8]. A major challenge
for methods development in displacement chromatography
of proteins is the identification of efficient displacers. The
choice of an appropriate displacer molecule depends not
only on the mixture of proteins in the feed but also on the
stationary phase chemistry and mobile phase conditions.
One of the advantages of low-molecular-mass displacers is
their ability to carry out selective displacement chromatog-
raphy[9] where the bioproduct of interest is displaced while
the low-affinity impurities are eluted in the induced salt gra-
dient ahead of the displacement train and the high-affinity
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impurities are desorbed in the displacer zone. To date, the
relative affinity of various displacers in ion-exchange sys-
tems has been evaluated using column experiments and
the steric mass action formalism[10]. While this approach
can readily predict column performance, it is time inten-
sive. Accordingly, there is a need to develop more rapid
methods for the identification of selective and high-affinity
low-molecular-mass displacers.

High-throughput screening (HTS) is widely employed to
identify novel lead compounds in drug discovery[11–16]
and for the identification of ligands for affinity chromatog-
raphy from combinatorial libraries[17]. Although the earli-
est reports for the use of combinatorial techniques for affin-
ity ligands involved screening of epitope peptide libraries
[18–20], small molecule affinity ligands have been identi-
fied for a variety of targets including kallikrein[21], IgG
[22], recombinant insulin precursor[23], etc. from focused
libraries. Recently, a parallel batch screening technique has
been developed for rapid displacer discovery[24]. Using
this technique, displacers are screened in parallel and are

0021-9673/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.chroma.2003.12.071



20 K. Rege et al. / J. Chromatogr. A 1033 (2004) 19–28

ranked according to the “percent protein displaced” from the
stationary phase material.

Property modelling techniques have been generalised into
a broader field known as quantitative structure–property
analysis (QSPR). Quantitative structure–activity relation-
ship (QSAR) approaches have been designed to assist the
development of bioactive compounds[25–31]. Quantita-
tive structure–retention relationship (QSRR) models have
also been reported for various modes of chromatography
[32–34]. Recently, quantitative structure–efficacy rela-
tionship (QSER) models have been developed to predict
displacer efficacy in ion-exchange systems[24]. While
several successful methods are known, the current work
is based on the use of the robust support vector machine
(SVM) approach due to its utility in handling large sets of
non-orthogonal descriptors and its inherent resistance to
over-fitting [35].

In this paper, potential displacers are screened in paral-
lel for ribonuclease A (RNAseA) and�-chymotrypsinogen
A (�-chyA) adsorbed together on high-performance (HP)
Sepharose SP to enable the identification of both selective
and high-affinity displacers for this model protein mixture.
A potential selective displacer is one that produces a suffi-
ciently high value of percent protein displaced for one pro-
tein while showing lower values for the other protein in the
mixture. In contrast, high-affinity displacers show high per-
cent protein displaced values for both proteins in the mix-
ture. In addition, the selected displacer leads are employed in
column experiments to validate the utility of this approach.

Percent protein displaced values from the parallel batch
screening experiments are also used to generate QSER
models using SVM regression. Two-dimensional (2D),
three-dimensional (3D) molecular operating environment
(MOE, Chemical Computing Group, Montreal, Canada),
molecular fragment (FRAG) and transferable atom equiv-
alent (TAE) descriptors[36,37] are calculated from the
energy-minimised structures of the displacers. Atraining
set of displacers is selected to derive a predictive QSER
model (i.e., learning from the database) using SVM regres-
sion and bootstrapping techniques[35]. It is shown that the
resulting QSER models are able to successfully predict the
efficacy of the test set displacers in the database. Finally,
interpretation of the resulting models enables the impor-
tance of various structural and electronic features of the
displacers to be elucidated.

2. Experimental

2.1. Materials

HP Sepharose SP stationary phase material was do-
nated by Amersham Biosciences (Uppsala, Sweden). A
Phenomenex Jupiter C4 10�m (250 mm× 4.6 mm) col-
umn was purchased from Phenomenex (Torrance, CA,
USA). A strong cation-exchange (SCX, Waters SP-8HR,

100 mm× 5 mm i.d.) column was obtained from Waters
(Milford, MA, USA). Ribonuclease A,�-chymotrypsinogen
A, sodium phosphate (dibasic), sodium phosphate (monoba-
sic) and sodium chloride were purchased from Sigma (St.
Louis, MO, USA).

Potential displacer molecules: 2,2 dimethyl-1,3-propane-
diamine, 3,3′-diamino-N-methyldipropylamine, butylamine,
diethylenetriamine, hydroxylamine, malonamamidine, mal-
onamide, methylamine,N-methyl-1,3-propanediamine,N,
N′-diethyl-1,3-propanediamine,N-2-(aminoethyl)-1,3 pro-
panediamine, pentaethylene hexamine were purchased
from Aldrich (Milwaukee WI, USA). Bekanamycin sulfate,
N-�-benzoyl-l-arginine ethyl ester (BAEE), neomycin sul-
fate, paromomycin sulfate, spermidine were purchased from
Sigma. 1,2-Diaminocyclohexane, cyclohexylamine, piper-
azine hydrochloride were purchased from TCI America
(Portland, OR, USA). Pentaerythrityl-(trimethylammonium
chloride)4 (PETMA4), dipentaerythrityl-(trimethylammo-
nium)6 (DPETMA6) were synthesised in Professor Moore’s
laboratory at Rensselaer[38].

2.2. Equipment

Parallel batch screening experiments were carried out in
1.4 ml glass vials with rubber septum purchased from Fisher.
Displacement experiments were carried using a Waters 590
HPLC pump (Waters, Milford, MA, USA) connected to a
chromatography column via a Model C10W 10-port valve
(Valco, Houston, TX, USA). The column effluent during
displacement experiments was monitored using a model
484 UV-Vis absorbance detector (Waters). Fractions of the
column effluent were collected using a LKB 2212 Helirac
fraction collector (LKB, Bromma, Sweden). Analytical
chromatographic experiments were carried out using a
model 600 multisolvent delivery system, a 712 WISP auto
injector and a 484 UV-Vis absorbance detector controlled by
a Millennium chromatography software manager (Waters).

2.3. Procedures

2.3.1. Parallel batch screening
The bulk stationary phase, HP Sepharose SP was washed

with deionised water and then the carrier buffer (50 mM
phosphate, pH 6.0) and allowed to equilibrate for 2 h. Af-
ter gravity settling of the stationary phase, the supernatant
was removed and 3.0 ml of the remaining stationary phase
slurry was equilibrated with 36 ml containing 3 mg/ml of
the protein mixture (1.5 mg/ml each of ribonuclease A and
�-chymotrypsinogen A) in 50 mM phosphate buffer, pH 6.0
at 20◦C. The proteins were equilibrated for 5 h in order to
attain complete equilibrium. After equilibration was com-
plete, the stationary phase was allowed to gravity-settle, the
supernatants were removed, and the protein content was de-
termined using linear gradient reversed-phase liquid chro-
matography (RPLC). The protein adsorbed on the stationary
phase was then determined by mass balance.
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Twenty-five microliters aliquots of the remaining station-
ary phase slurry with bound protein were then added to
300�l containing 10 mM displacer in 50 mM phosphate
buffer, pH 6.0 at 20◦C. A separate displacer was employed
for each batch experiment to enable parallel screening. A
total of 22 different displacers were examined for each pro-
tein on each stationary phase material and the experiments
were carried out in triplicate. The system was equilibrated
for 5 h. After equilibrium was achieved, the supernatant was
removed and the protein content was determined via RPLC.
The concentration of protein was determined and the “per-
cent protein displaced” by each displacer was calculated by
mass balance.

2.3.2. Column displacement chromatography
The column was initially equilibrated with the carrier

solution and then sequentially perfused with the feed and
displacer solutions. Separate displacement experiments
were carried out using 6 mM diethylenetriamine and 8 mM
paromomycin as the displacer on a HP Sepharose SP col-
umn. Two hundred microliters fractions were collected for
subsequent analysis of the proteins and displacers. Fol-
lowing the infusion of displacer, column regeneration was
carried out using a 2 M NaCl solution. All displacement
experiments were carried out at 0.2 ml/min and the ef-
fluent was monitored at 280 nm. Experimental conditions
including the feed load, salt concentration, and displacer
concentration employed for each separation are given
in the figure legends of the corresponding displacement
chromatograms.

2.3.3. Linear gradient HPLC analysis

2.3.3.1. Parallel batch screening experiments. Linear
gradient RPLC with a Phenomenex Jupiter C4 10�m
(250 mm × 4.6 mm) column was used to evaluate the
amount of�-chyA and RNAseA in the supernatant of the
parallel batch screening experiments. A linear gradient of
30–100% (v/v) buffer B was carried out in 5 min [buffer
A: 0.1% (v/v) trifluoroacetic acid (TFA) in deionised
water; buffer B: 90% (v/v) acetonitrile and 0.1% (v/v)
TFA in deionised water]. The flow rate was 1 ml/min and
the column effluent was monitored at 280 nm. The in-
jection volumes were varied between 25 and 200�l; as
little as 2�g of protein could be detected from a single
injection.

2.3.3.2. Displacement experiments. Protein and displacer
analysis for the displacement of�-chyA and RNAseA us-
ing diethylene triamine and paromomycin was carried out
using reversed-phase chromatography (Phenomenex C4 col-
umn) under linear gradient conditions. The mobile phase
employed for the analyses were deionised water (A) and
90% (v/v) acetonitrile in deionised water adjusted to pH 2.2
with TFA (B). The fractions were diluted 1–3-fold and 10�l
samples were injected. A 20 min gradient from 30 to 100%

(v/v) B at a flow rate of 1 ml/min was employed for the
analysis of�-chyA and RNAseA. The column effluent was
monitored at 280 nm. Diethylene triamine and paromomycin
were analysed by complexation with fluorescamine[39,40].
The fractions were diluted 5–100-fold and 0.28 mg/ml so-
lution of fluorescamine in acetone was added to the frac-
tions with displacer in a 1:3 (v/v) ratio. Excitation at 390 nm
and emission at 475 nm were then employed to quantify the
amount of displacer in the fractions.

2.3.4. QSER modelling and SVM regression models
In order to construct informative QSER models,

electron-density-based TAE quantum mechanics descrip-
tors, molecular operating environment (MOE) descriptors
and molecular fragment-type descriptors (FRAG) were
employed. Using this hybrid set of descriptors, a SVM
sparse regression algorithm was applied in a feature se-
lection mode to determine a subset of relevant molec-
ular property descriptors for each of the training sets
involved in the bootstrapping procedure. Subsequently,
non-linear SVM models were built based on those rele-
vant descriptors. The overall modelling scheme is shown in
Fig. 1.

2.3.5. Implementation
The structures of the displacer molecules were obtained

from the supplier’s website (http://www.sial.com/). These
molecules were drawn in SYBYL 6.5 (Tripos, St. Louis,
MO, USA) and energy minimised using the MMFF94 force
field. MOE software was used to calculate the MOE molec-
ular descriptors. The laboratory-developed RECON 5.2
package was employed for generating the transferable atom
equivalent (TAE) descriptors for the displacers. An SVM
program, developed independently in the Department of
Mathematics at Rensselaer Polytechnic Institute, was used
in the analysis[41].

2.3.6. TAE descriptor generation
The transferable atom equivalent/RECONstruction

(TAE/RECON) [36,37] method consists of a rapid charge
density reconstruction algorithm that utilises atomic charge
density fragments that have been pre-computed from ab
initio wave functions. In principle, a library of atomic
charge density components (TAEs) can be used to construct
molecular electron densities in a form that allows for rapid
retrieval of the molecular surface properties needed to gen-
erate descriptors. For each molecule, the RECON program
reads its molecular structure information, and then recon-
structs the electronic properties of the molecular surface
from the atomic fragments. The distributions of several
electronic properties on molecular surfaces may then be
quantified to give a large variety of numerical QSER de-
scriptors. The CPU and disk resources required for TAE
reconstruction are minimal—the electronic property distri-
butions of 22 displacers may be computed in about 15 s on
a single-headed 1.7 GHz Linux workstation.

http://www.sial.com/
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Fig. 1. (a) Computational chemical property design and model validation
and (b) feature selection flowchart.

2.3.7. MOE descriptors
The MOE program provides a combination of sev-

eral types of traditional molecular property descriptors,
including connectivity-based topological 2D descriptors,
physico-chemical property descriptors, shape-independent
3D molecular features and some pharmacophoric descrip-
tors. These descriptors were calculated for the displacers
via the QuaSAR-descriptors module in the MOE package.
Prior to MOE descriptor calculation, the displacer struc-
tures must be appropriately charged as at the pH of the
experiments. For this, the ACD/pKa DB package (Advanced
Chemistry Development, Toronto, Canada) was employed
to compute the pKa’s of the charge centers on the dis-
placer molecule. These pKa values were then used to assign
the charges on the displacer molecules at the pH of the
experiments.

2.3.8. Support vector machine modelling
The support vector machine (SVM) method proposed by

Vapnik [35] is based on statistical learning theory. The SVM

method has a number of interesting properties, including an
effective avoidance of overfitting, which improves its abil-
ity to build models using large numbers of molecular prop-
erty descriptors with relatively few experimental results in
the training set. Although SVM was originally developed
for pattern recognition, it was later extended to solve the
regression problem[35]. In the present work, we focus on
support vector regression for creating QSER models of dis-
placer efficacy.

To summarise the operation of an SVM modelling
procedure, it is important to consider some fundamental
principles of SVMs: With a given set of training data, the
objective is to find a functionf(x), called theε insensitive
loss function, that has less thanε deviation from the experi-
mental protein retention data for all cases in the training set.
In other words, those predicted % protein displaced values
within ε distance of the actual response are not penalised
for being erroneous. Only those prediction points beyondε

of the real response values are considered to contain mod-
elling errors and are included in the “loss function”. This
technique helps to control the complexity of the model and
tends to minimise the risk of overfitting. In QSER studies,
the magnitude ofε will be roughly equivalent to the exper-
imental error in the measurement of % protein displaced
values.

In typical QSPR studies, many more descriptors are ini-
tially available than the number of molecules in the dataset,
and usually include some redundant or irrelevant variables.
In order to identify the relevant descriptors for a particular
problem, variable selection techniques are always employed
to choose those informative descriptors and eliminate ir-
relevant descriptors from consideration. The application of
this type of feature selection serves to improve the com-
putational signal-to-noise ratio in the resulting models. In
this study, we applied a feature selection approach based
on the sparse SVM regression[41]. Within this technique,
a series of linear SVM models (usually 20–40) that ex-
hibit good generalisation are constructed. In each linear
l1-norm SVM or bootstrap, the optimal weight vector will
have relatively few non-zero weights with the degree of
sparsity depending on the SVM model parameters. Those
features with non-zero weights then become potential at-
tributes to be used in the non-linear SVM. The method
exploits the fact that linear SVM withl1-norm regularisa-
tion inherently performs feature selection as a side effect
of minimising capacity in the SVM model. Finally, the
union of all obtained subsets of features produces the final
descriptor set that can be used to construct the non-linear
SVM predictive model. In order to get more robust and
general predictive results, multiple QSER models based on
the same feature set are built. Thus, instead of using a sin-
gle model, which is heavily and easily affected by chance
correlations, the average of all model predictions are used
as our final prediction results. This kind of de-biasing tech-
nique is referred to as “bagging” in the statistical analysis
field [42].
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3. Results and discussion

3.1. Parallel batch screening

Parallel batch displacement experiments were carried
out with the two proteins ribonuclease A (RNAseA) and
�-chymotrypsinogen A (�-chyA) as described inSection 2.
These two proteins exhibit similar retention times on HP
Sepharose SP under linear gradient conditions at pH 6.0
[43]. Table 1shows the % protein displaced data for both
proteins for the 22 displacers screened. The data is arranged
in increasing order of %�-chyA displaced. As seen in
the table, displacers with low charge such as methylamine,
malonamamidine, etc. showed negligible values of % pro-
tein displaced for both proteins. As the molecular weight
and basicity of the molecules increased, the % protein dis-
placed values of both proteins also increased. Interestingly,
towards the middle of the table, the values of % protein dis-
placed for RNAseA are higher than those for�-chyA. For
example,N,N′-diethyl-1,3-propanediamine propanediamine
(% �-chyA displaced: 28, % RNAseA displaced: 59.57),
diethylene triamine (%�-chyA displaced: 28.9, % RNAse
A displaced: 61.8) and 2,2-dimethyl-1,3-propanediamine
(% �-chyA displaced: 34.78, % RNAseA displaced: 59.30)
all showed higher values of % RNAseA displaced as com-
pared to %�-chyA displaced. These results indicate that
these displacers are possible lead compounds for selec-
tive displacement of RNAseA from a mixture of the two

Table 1
Parallel batch screening data for % RNAseA and %�-chyA displaced
on HP Sepharose SP

Displacer %�-chyA
displaced

% RNAseA
displaced

BAEE 1.05 3.78
Malonamamidine 1.76 3.16
Malonamide 2.05 5.59
Methylamine 3.79 8.66
Butylamine 3.23 6.24
Hydroxylamine 4.73 11.38
Piperazine 7.82 30.39
Cyclohexylamine 18.37 4.25
N,N′-Diethyl-1,3-propanediaminea 28.00 59.57
Diethylene triaminea 28.93 61.80
2,2-Dimethylpropanediaminea 34.78 59.30
1,2-Diaminocyclohexane 41.99 53.40
N-Methyl-1,3-propanediamine 54.07 69.16
N-(2-Aminoethylamine)-

1,3-propanediamine
63.91 61.73

Spermidine 75.31 77.77
PETMA4 83.45 83.16
Pentaethylenehexamine 81.14 59.49
3,3′-Diamino-N-methyldipropylamine 87.33 59.82
DPETMA6 82.96 67.81
Bekanamycin 82.04 57.13
Neomycinb 87.25 71.75
Paromomycinb 88.51 66.32

a Potential selective displacers for RNAseA.
b High-affinity displacer leads for RNAseA and�-chyA.

proteins. Of the three possible leads, diethylene triamine
was investigated for its utility to act as a selective dis-
placer of RNAseA under column conditions as described
below.

Displacers located towards the end ofTable 1 were
able to efficiently displace both proteins under these batch
conditions indicating that they are good candidates for
“high-affinity” displacers. For example, the aminogly-
cosides, paromomycin (%�-chyA displaced: 88.51, %
RNAseA displaced: 66.32) and neomycin (%�-chyA dis-
placed: 87.25, % RNAseA displaced: 71.75) showed high
% protein displaced values for both proteins and therefore
stand out as possible high-affinity displacers that may be
used for the displacement of both proteins. The fact that
these high-affinity compounds displace more of the�-chyA
than RNAseA is due primarily to the multicomponent ad-
sorption behaviour of this binary protein mixture (data not
shown). Paromomycin was used as a possible high-affinity
displacer in the subsequent column experiment.

Fig. 2 shows the structures of the potential selective and
high-affinity displacer lead molecules. Column displace-
ments were carried out using the equilibrium displacer
concentration obtained from the batch experiments. Exper-
iments were first carried out with the selective displacer
lead compound diethylene triamine. As seen inFig. 3, this
column experiment resulted in the selective displacement
of RNAseA with �-chyA remaining behind the displacer
zone. The high-affinity displacer lead, paromomycin, was
examined for its ability to displace both proteins. As seen
in Fig. 4, paromomycin was indeed able to successfully
displace both RNAseA and�-chyA under the column
displacement conditions. These results indicate that %
protein displaced data from parallel batch screening exper-
iments can be used as a qualitative guide for the selection
of column conditions for both selective and high-affinity
displacements.

Fig. 2. Molecular structures of lead displacer candidates selected from
parallel batch screening data: (a) selective displacers and (b) high-affinity
displacers.
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Fig. 3. Selective displacement of RNAseA on HP Sepharose SP using
6 mM diethylenetriamine. Column: 100 mm× 5 mm i.d. HP Sepharose
SP; carrier: 50 mM phosphate, pH 6.0; protein: 35 mg of�-chyA and
RNAseA; flow rate: 0.2 ml/min.

3.1.1. QSER models
The aim of this study was to generate models that can

predict the displacer efficacy for�-chyA and RNAseA as
well as aid in identifying the structural components that
contribute to the efficacy and selectivity of the displacers in
cation-exchange systems. To this end, experimental batch
screening data (two responses) were combined with 189
MOE descriptors, 208 FRAG descriptors and 147 TAE
descriptors. Descriptors having the same values for all 22
molecules were eliminated from the dataset since these pro-
vide no real information in the model. Furthermore, descrip-
tors showing a variance of greater than four times a standard
deviation (i.e., 4σ) were also removed from the dataset so as
to reduce outliers and to enable interpretation of the models.
The final dataset consisted of the two responses and 273 de-
scriptors and was used to generate two independent QSER
models. This dataset was subjected to SVM feature selection,
as described above, to give two independent feature sets,
one corresponding to each response. Finally, the dataset was
divided into training and test sets for the purpose of model
building. It was decided to keep 10% of the molecules (i.e.,
2 molecules) in the test set and the rest (i.e., 20 molecules)
in the training set. Methylamine (Mol 12) and paromomycin
sulfate (Mol 18) were arbitrarily chosen to be in the ex-

Fig. 4. Displacement of�-chyA and RNAseA on HP Sepharose SP
using 8 mM paromomycin. Column: 100 mm× 5 mm i.d. HP Sepharose
SP; carrier: 50 mM phosphate, pH 6.0; protein: 35 mg of�-chyA and
RNAseA; flow rate: 0.2 ml/min.

ternal test set. Once established, the QSER models were
tested for their predictive ability for the external test set of
displacers.

Fig. 5a and bshows the correlation between the experi-
mental and predicted results for %�-chyA and % RNAseA
displaced on HP Sepharose SP. The open circles represent
the “bagged” predictions for the training set molecules and
the dark squares represent “bagged” predictions for the test
set molecules. The error bars in these figures represent the
standard deviation in the predicted % protein displaced val-
ues. The cross-validatedr2 for these models were 0.9506
and 0.9785, respectively, which indicated that the predicted
values for the training set were in good agreement with the
experimental data. Importantly, the % protein displaced re-
sults for the molecules not included in the training of the
model (i.e., the external test set) demonstrate the predictive
power of these models (Fig. 6a and b). Even though the train-
ing set used to generate these models contained molecules
with a high level of structural diversity (e.g., linear, cyclic,

Fig. 5. QSER models based on a support vector machine (SVM) regression
approach for % protein displaced on HP Sepharose SP for (a)�-chyA
and (b) RNAseA.
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Fig. 6. Predictions of the QSER models for % protein displaced on
HP Sepharose SP for the external test set of molecules comprising of
methylamine (Mol 12) and paromomycin (Mol 18) for: (a)�-chyA and
(b) RNAseA.

dendritic, and aromatic), the models were able to produce
good predictions.

Models were then examined to determine the physico-
chemical phenomena influencing displacer efficacy and
selectivity in cation-exchange systems. In order to facilitate
interpretation, it was necessary to determine which descrip-
tors were consistently important when different combina-
tions of training and validation molecules were used. As
indicated inFig. 1, each different set of training molecules is
called a “fold” and the model created using this set is used to
make predictions on the validation molecules left out of the
training set for that particular “fold”. Accordingly, star plots
were generated to evaluate the relative importance of each
of these descriptors selected throughout each of 40 bootstrap
“folds” used for creating the composite model set. A star
plot presentation of these results consists of a set of radial
graphics that represent a multivariate data matrix—in this
case, the weight matrix. In these plots, each star corresponds
to a specific descriptor in the weight matrix generated by

Fig. 7. Star plots of important model descriptors selected in the QSER
models based on the SVM regression approach for % protein displaced
on HP Sepharose SP for (a)�-chyA and (b) RNAseA.

all 40 linear SVM regression bootstrap folds and the length
of each ray represents the weight of this descriptor in one
of the bootstrap iterations. For each star plot, the selected
descriptors are ranked according to the sum of their radii
for all bootstraps, placing the most significant positively
weighted descriptor in the upper left hand corner and the
most significant negative contributor on the lower right. The
order proceeds from left to right in a columnar fashion. The
relative contribution of a descriptor to the aggregate model
is quantified by the sum of the weights of that descriptor
in all bootstraps, relative to the sum of the weights of all
descriptors in the model. The star plots for the�-chyA and
RNAseA displacement models are shown inFig. 7a and b.

The relevant QSER descriptors were found to include
shape, size, surface property, molecular fragment, and
electron-density derived descriptors. The definitions of the
important descriptors are given inTable 2. As seen in the
table, many descriptors have direct physical/chemical sig-
nificance and are thus easy to interpret. For descriptors that
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Table 2
List and definition of important descriptors used for displacer efficacy modelling

Descriptor Type Definition

B.DOUBLE MOE Number of double bonds. Aromatic bonds are not considered to be double bonds.
DASA MOE Absolute value of the difference between the water accessible surface area of all atoms with positive and

negative partial charges.
DEL.K.MIN TAE Minimum rate of change of the K electronic kinetic energy density normal to and away from the molecular

surface.

FRAG151 FRAG

FRAG185 FRAG

FRAG24 FRAG
PEOE.VSA.FPOL MOE Fractional polar van der Waals surface area.
PEOE.VSA.FPOS MOE Fractional positive van der Waals surface area.
PEOE.VSA2 MOE Sum of VDW surface area where partial charge of atoms is in the range (0.10, 0.15).
RPC MOE Relative positive partial charge: the largest positive partial charge on an atom in the molecule divided by the

sum of the positive partial charge on the molecule.
SIKMIN TAE The minimum of the surface integral of the K electronic kinetic energy density (SIK) distribution.
SLOGP.VSA1 MOE Sum of VDW surface area such that the contribution to logP(o/w) of atom(s) is in the range (−0.4, −0.2).

are more difficult to interpret (e.g., PEOE.VSA2), molec-
ular surface visualisation was employed to gain insight
into the physico-chemical information provided by these
descriptors in the model.

As seen from the star plots, descriptors associated with
positive charges on the displacer molecules were found to
exist in both models. DASA represents the difference be-
tween the positively and the negatively charged surface area
of the displacer molecule. Since all our displacers had a net
positive charge at the pH of the batch screening experiments
(i.e., pH 6.0), this descriptor is associated with the relative
abundance of positive charges on the displacer molecules.
This descriptor had a positive weight in the�-chyA model,
which indicates that net positive charge is desirable, as would
be expected in cation-exchange systems. The presence of
a combination of PEOE.VSA.FPOS and PEOE.VSA.FPOL
in the QSER model for % RNAseA displaced indicates that
a positive and polar surface area on the molecules is re-
quired for effecting high values of % RNAseA displaced.
The positive contributions of these two descriptors in the
model are in agreement with the nature of cation-exchange
chromatography. PEOE.VSA2 is a histogram bin-type de-
scriptor associated with molecular surface area with a pos-
itive PEOE partial charge value in the range (0.10–0.15).
From molecular surface visualisation we observed that this
range of partial charge values was typically found on hydro-
gen atoms associated with uncharged amines (Fig. 8). The
negative value associated with this PEOE.VSA2 descriptor
indicates that amine groups on the candidate molecules that
were still uncharged at pH 6 had a negative influence on
displacer efficacy.

As seen inFig. 7, RPC is the most dominant descriptor in
both QSER models. RPC is associated with the relative pos-
itive partial charge (based on the MMFF94 force field) on
the molecule and is mathematically defined as the ratio of

the largest positive partial charge to the sum of the positive
partial charge on the molecule. It is thus a measure of the
distribution of the positive partial charge, with a higher value
corresponding to concentrated partial charge and a lower
value indicating that the partial charge is more evenly dis-
tributed over the molecular surface. This descriptor is seen
to have a high negative contribution in both models, suggest-
ing that lower values of RPC are favourable for higher dis-
placer efficacy. This indicates that, in addition to the amount
of charge, the distribution of charge on the molecule also
plays an important role in determining displacer efficacy.

It can be seen fromFig. 7athat FRAG151 is important for
the displacement of�-chyA, but was not observed to be im-
portant for RNAseA. FRAG151 describes a three-methylene
spacing in a candidate molecule. This result is consistent
with previous observations in our laboratory that displac-
ers such as spermidine and spermine with three and four
nitrogen atoms, respectively, containing a three-methylene
spacing between nitrogen atoms are more efficacious than
diethylene triamine and triethylene tetramine which only

Fig. 8. Molecular surface visualisation enables us to identify atoms/groups
associated with the PEOE.VSA2 descriptor having PEOE partial charges
in the range (0.10, 0.15). Atoms that contribute to PEOE.VSA2 are
indicated with arrows.
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have two-methylene spacing between the nitrogen atoms
[10,24]. It is interesting to note that while molecules with
two-methylene spacing such as diethylene triamine were
able to displace RNAseA, they were not able to effectively
displace �-chyA (Table 1). In contrast, molecules with
three-methylene spacing such as spermidine were indeed
able to effectively displace�-chyA, in qualitative agreement
with the star plots results. These results with spermidine
and diethylene triamine also make sense when consider-
ing the results described for the PEOE.VSA2 descriptor,
which indicated that uncharged amine groups on candi-
date molecules (e.g., diethylenetriamine) had a negative
influence on displacer efficacy.

4. Conclusions

In this paper, we demonstrate that the parallel batch dis-
placement protocol can be extended to a mixture of proteins
adsorbed on the stationary phase to enable the identifica-
tion of high-affinity and selective displacers. Twenty-two
different molecules ranging from simple linear polyamines
to complex aminoglycosides were screened for two pro-
teins, �-chymotrypsinogen A and ribonuclease A, on HP
Sepharose SP. The two proteins were adsorbed on the
resin and the respective % protein displaced values were
used to rank the displacers. Three displacers structurally
related to each other (diethylene triamine, 2,2-dimethyl-1,3-
propanediamine, N,N′-diethyl-1,3-propanediamine) with
two charges at the employed pH, were found to have higher
selectivity for the displacement of RNAseA as compared
to �-chyA. In contrast, high % protein displaced values
were observed for both proteins when aminoglycosides
such as neomycin and paromomycin were employed. The
information from the batch screens was validated using
column displacement experiments in which the selective
and high-affinity displacer “leads” resulted in selective dis-
placement of RNAseA and displacement of both proteins,
respectively. These experimental results indicate that the
parallel batch screening technique enables the rapid iden-
tification of displacer selectivity and affinity, and that the
results can be employed directly in a column setting.

The results from the parallel batch screening experiments
were then used to generate predictive QSER models using
SVM regression. The models showed high regression coef-
ficients (r2 > 0.95) and the predicted % protein displaced
values were in good agreement with the experimental data.
This is particularly significant in view of the fact that the
two molecules used as the external test set were quite di-
verse (i.e., methylamine and paromomycin). The star plots
from the QSER models revealed the influence of molecular
characteristics, such as charge and charge distribution, on
displacer efficacy. In addition, more specific characteristics
were also revealed in the models such as the importance
of a three-methylene spacing between amine groups for
enhancing displacer affinity. The results indicated that a

three-methylene spacing was advantageous for increasing
the displacement of�-chyA. This was corroborated by the
experimental data, which showed that while molecules with
three-methylene spacing such as spermidine were able to
effectively displace�-chyA, displacers with two-methylene
spacing such as diethylene triamine were only able to
effectively displace RNAseA.

The results presented in this paper demonstrate that
parallel batch screening can be used in concert with ad-
vanced QSER modelling for the a priori design of both
selective and high-affinity displacers. Future work will ex-
amine the efficacy of this multi-protein screening and mod-
elling technique for more complex mixtures of industrial
relevance.
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